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ABSTRACT

Correlated ordinal response data are used to estimate and compare two receiver operating charac-
teristic (ROC} curves. The data are modeled using a flexible, new class of binormal association-
marginal {BAM) models. BAM models use the latent binormal structure of classic signal detection
theory to model each ordinal response marginal distribution. In contrast to bivariate binormal
models, BAM models do not impose the added restriction that the ordinal responses have joint
distributions that are determined by latent bivariate normal distributions. Instead, the associa-
tion structure of the ordinal variables is directly specified using standard loglinear models. The
maximum likelihood fitting program BAMROC, which uses an algorithm related to those used
to fit composite-link generalized linear marginal models, is described. The method is illustrated

through the analysis of a neonatal radiograph data set and a small simulation study.

KEYWORDS: bivariate binormal model, diagnostic performance, loglinear model, marginal model,

maximum likelihcod, multivariate ordinal response, ROC curve, signal detection theory.

1 Introduction

Receiver operating characteristic (ROC) analysis is commonly used to evaluate the performance
of signal detection procedures (modalities), such as medical imaging or screening procedures. For
convenience, we use medical imaging as our canonical example, and adopt the corresponding
language. These modalities are designed to aid in the diagnosis of units (e.g. patients), which,

in theory, can be classified as “case” or “control.” Often, two or more modalities are to be
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compared vis-a-vis their diagnostic performance. This paper outlines a method that can be used

to empirically investigate and compare the diagnostic performances of two or more modalities.

Consider a situation whereby a “reader” uses two modalities to evaluate a sample of n; control
and ng case units; the case-control status is unknown to the reader. Each unit is assigned two
suspicion rating scores, one for each modality. Here, we assume that the same scale, 1 to R (> 2),

where 1 = “definitely not a case” and R = “definitely a case,” is used for both modalities.

The resulting suspicion rafing data can be displayed using two R x R cross-classification tables,
one for the controls and one for the cases. The (¢, 7) cell in the case table contains the number of
cases rated 1 using the first modality and j using the second modality. The row [column] margins
of the two tables could be used to estimate measures of the diagnostic performance of modality
1 [2]. To compare the two estimates, however, it is important to note that the row and column
marginal counts are not generally independent because the same sample of units was evaluated
using both modalities. This is the “correlated” data case considered in Metz et al. (1984). When
each modality is used to evaluate different samples, the comparison is more straightforward (Metz
and Kronman, 1984). Drawbacks to this independent sample design include (i) decreased power
for discerning modality differences and (ii} the association between the two modality ratings

cannot be described.

The paper is organized as follows. Section 2 introduces a paired-comparison study of neonatal
radiograph evaluation methods (Franken et al. 1992), and gives some of the data. Section 3 de-
scribes the classic model of signal detection theory and the corresponding ROC curves. Binormal
association-marginal (BAM) models are introduced in Section 4. Section 5 briefly discusses cur-
rently available methods and models. In particular, the closely related bivariate binormal model

of Metz et al. (1984) is described. We argue that the flexible class of BAM meodels serve as an
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attractive alternative to the bivariate binormal model. Section 6 introduces the maximum likeli-
hood fitting algorithm used in the computer program BAMROC; the algorithm is related to those
used to fit composite-link generalized linear marginal models (¢f. Glonek and McCullagh 1995
or Glonek 1996). Maximum likelihood estimation of areas under ROC curves and the differences
between them is also discussed. Section 7 provides an analysis of the neonatal radiograph data
using the methods discussed in the paper. To illustrate model differences, simulated tables are

analysed in Section 8. Section 9 provides a brief summary and discussion.

2 Example: Neonatal Radiograph Data

A paired-comparison study of neonatal radiographs was discussed in Franken et al. (1992). Al
though four radiologists participated in the study, we restrict attention to one of them in this
paper. The radiologist used a 5-point suspicion scale to rate 33 normal (control) and 67 abnormal
(case) radiographs. Each of the 100 radiographs was viewed twice, once using a video image
(modality 1) and once using a plain film image (modality 2). It is of interest to determine which

image, video or plain film, is a better diagnostic. The rating data are given in Table 1 below.

Table 1. Neonatal Radiograph Rating Data

Plain Film Plain Film

1 2 3 4 5 : 1 2 3 4 5
1({4 1 1 0 0| 6 1{1 01 2 O 4
214 8 3 1 1]17 2({1t 2 1 1 0 5
Video 3|0 2 2 0 0/ 4 Video 3|0 2 1 1 1 5
410 3 1 1 0y 5 410 2 3 4 6 |15
50 0 ¢ 1 011 511 1 3 6 27|38
8 14 7 3 1|33 3 7 9 14 34|67

Normals Abnormals

To get a rough idea of the diagnostic performance of video imaging, we can compare the
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two row marginal empirical distributions. The lowest suspicion score ‘1’ was assigned to 6 of 33
normals and only 4 of 67 abnormals. Similarly, only 1 of 33 normals was assigned the highest
suspicion score 'D,” while 38 of the 67 abnormals were assigned a ‘6°. Evidently, there is some
diagnostic capabilities of video imaging. In the same way, we can roughly assess the diagnostic

performance of plain film imaging by comparing the two column marginal empirical distributions.

3 Measuring Diagnostic Performance using ROC Curves

This section describes a commonly-used, formal approach for measuring and comparing diagnostic
performances of modalities. Before describing the approach, we make an observation regarding the
comparison of diagnostic performances of the two modalities used in the example of the previous

section.

A comparison of diagnostic performances of video and plain film imaging arguably should not
be based on the direct comparison of row and column marginal empirical distributions of Table
1. Unless the rating scales for the two modalities are used in exactly the same way, a comparison
like “6 of 33 normals using videc imaging compared to 8 of 33 normals using plain film imaging
were rated ‘1°" is not very meaningful; the rating ‘1’ could mean something very different for the
two modalities. Often, the scientific objective is to measure diagnostic performance in a way that

does not depend on the way the rating scale is used.

In contrast to non-parametric measures of diagnostic performance {cf. Delong et al. 1988), the
classic model-of signal detection theory, which is described below, affords a measure of diagnostic
performance that is independent of the way the rating scale is used. We point out that with this
classic parametric model, the measured diagnostic performances of two modalities can be identical

even when the ordinal response marginal distributions corresponding to the two modalities are
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quite different.

The classic model of signal detection theory for ordinal rating data was originally introduced
in the psychometric literature (e.g., see Green and Swets 1966, Dorfman and Alf 1969), and has
been used in many other disciplines since then. Using the language of the current paper, the
model assumes that each unit “generates” an imperfectly-observable (latent) suspicion score. The
latent scores for controls are assumed to be realizations of a continuous random variable X*, and
the latent scores for cases are realizations of a continuous random variable Y*. The model states
that the observable {or manifest) ordinal response variables, say X and Y, have distributions that
are determined according to P(X < j) = P(X* < ¢;) and P(Y £ j) = P(Y* £ ¢;). That is,
the manifest responses are discretized versions of the latent suspicion scores; the cutpoints ¢;’s
are independent of case-control status, Diagnostic performance (i.e. signal detection capability)
measures are based on some comparison of the latent X* and Y™ distributions. As an example, if
the modality is an effective method of diagnosis, we might expect that Y™ is stochastically larger

than X*.

A simple way to graphically compare the X* and Y™ distributions is to create a parametric
curve of P(X* > ¢) by P(Y* > c¢), where the cutpoint or threshold c is the parameter and
runs from —oo to co. This is the (latent) receiver operating characteristic (ROC) curve (cf.
Metz 1978, Hanley and McNeil 1982), which gives a description of diagnostic performance that
is independent of the way the manifest rating scale is used. The probabilities plotted in an
ROC curve have particularly nice interpretations. If the decision rule is to classify as “case” if
the (latent) suspicion score exceeds the threshold value ¢, then P(X* > c¢) is the false positive

probability and P(Y™ > ¢} is the true positive probability.

Functionals of the latent ROC curve can be used as diagnostic performance measures. One
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commonly used measure is the “area under the curve” (AUC) or area index (cf. Hanley 1998). This
area can be shown to equal P(Y™* > X*) and, hence, has a nice interpretation as the probability
that the latent suspicion score for a randomly selected case is higher than for a randomly selected
control. Two or more modalities can be compared by measuring the differences between the

AUCs,

Note that we do not use a manifest measure like P(Y > X) as a measure of diagnostic per-
formance, because this measure is not manifest scale independent. Of historical interest, Bamber
{1975) referred to measures based on the manifest and latent variables as diagnostic performance
{not to be confused with our more general use of the word ‘performance’) and diagnostic capacity,
respectively. Using Bamber's terminology, non-parametric approaches estimate diagnostic perfor-
mance and our approach estimates diagnostic capacity. It is important to understand that these

two measures are different entities which can be very different numerically.

4 The Binormal Association-Marginal Model

Let X,, and Y;, represent the observable (or manifest) suspicion scores for a randomly selected
control and a randomly selected case, respectively, when modality m is used. These manifest
ordinal variables take on values 1,..., R, and are used to create the cross-classification tables
discussed above. The ultimate goal is to use data which are realizations of the manifest variables

to estimate and compare the latent ROC curves.
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4.1 Random component

Let N1;; = the number of controls for which (X1, X2) = (4, 7} and let Ny;; = the number of cases

for which (¥7,Y2) = (4,7). It follows that
{Niij; :4,7=1,...,R} indep ~ Mult(ng, {mes; : 4,5 =1,...,R}), k=12

where my;; = P(X1 =14, Xp = j) and myy; = P(Y1 =4, Y3 = j). Aésume that ny; < Nig; are the

observed counts.

4.2 Systematic component

The systematic component for a binormal AM model comprises an association and a marginal

component.

Marginal Model: The marginal model implies that the manifest ordinal variables have distri-

butions that are determined by latent continuous variables,
it = P(Xy=1) = Pc1-1 < X7 < ci)

My = P(Yl = i) = P(Cl,i_1 < Yl* < C]_i)
Ti4s = P(Xa=1) = P(coi—1 < X3 £ c24)
(

Typi — Y2=‘i) =P(Cz’i_1 <Y2* SCQI«;), i= 1,...,R,

where —c0 = ¢y <cmi < - <cmpr=00, m=1,2

A binormal model (cf. Green and Swets 1966, Dorfman and Alf, Jr. 1969) for modality m is
specified by assuming, without loss of generality, that X, and Y}, have normal distributions with
means 0 and i, and variances 1 and o2, = exp(2&y,), respectively. Although other distributions
such as the gamma (cf. Dorfman et al. 1997) could be considered, we will restrict attention to

the normal distribution in this paper.

kth

In matrix notation, the marginal model for the population can be specified as

My, = fr(8),
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where M7y is the 2(R — 1) x 1 vector of non-redundant row and column marginal cumulative
probabilities and f3{3) is a vector of normal probabilities which depend on {3, the vector that
contains cutpoint, mean, and variance parameters. As an example, if suspicion scores are recorded

on an K = 5 level ordinal scale and & = 1 corresponds to the control population, then

[ T4 ] [ ®(cy1) ]
i+ + T4 P(c19)
Mimy = | Ty + T4 Tz +H74s | = | $laa) | = H(8),
T141 $(ca1)
| mp1 F g2 F T+ mies | L P(eog)

where @(:) is the standard normal cumulative distribution function. Similarly, assuming that

k = 2 corresponds to the case population,

[ o1t T [ @l — pa)/exp(&a}) ]
To1+ + Tooyt O((c12 — 1) /exp(&r))
Moy = | mory +mony + sy +maar | = | B((ers — m)/exp(6r)) | = 2(6).
To+1 ®((eg1 — p2)/exp(£2))
L ;T2+1 + moyo + 243+ mo4a 1 L B((c2a — #.2)/63’{13(52)) |

Association Model: In this paper, we restrict attention to loglinear association models specified

as logmw = X7. To avoid redundancies and contradictions with constraints imposed by the

marginal model, it is assumed that X includes columns corresponding to population-specific
(1 (2

intercepts (1) and main-effects parameters (7,,”, 7, y ); this loglinear model imposes no constraints

on the marginal distributions. Some examples include,

1 .. @

Ap s logmy; = 1 + 1 Thi (independence)

Ag: logmg; =71 + Té:) + ’.f‘g) + MJ(i =7) (quasi—independence)

Ap: logmp; =7 + T,,Ell-) + T,ﬁ) + A g (homogeneous linear—by—linear)
Ag: logm; =T + 'r,g) + T}g’) + Akij (saturated)
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Summarizing, the binormal association-marginal (BAM) model constrains the ordinal suspicion
score marginal distributions by relating them to distributions of latent normal suspicion scores.
The association between the pairs of dependent latent suspicion scores is not explicitly specified.
Instead, the association between the two manifest ordinal suspicion scores is modeled directly
using standard loglinear association models. Evidently, BAM models do not require explicit
specification of the joint distribution of the latent normal suspicion scores. Because of this, the
class of BAM models is very broad and non-restrictive. In addition, the BAM modeling approach
effectively separates the tasks of specifying the marginal and association components of the model.
This leads to simplified model interpretations; in particular, the association structures are directly

interpretable on the manifest-response scale rather than on the latent-response scale.
5 A Comparison to Previous Methods and Models

Several methods and models have been proposed to compare two (or more) ROC curves using
correlated data. Beam (1998) gives a nice description of many of the available methods. There are
non-parametric methods based on multivariate U-statistic theory (Delong et al. 1988, Obuchowski
1997). Here, the objects of analysis are the ROC curves that are based directly on the manifest
ordinal suspicion scores. This is in contrast to the latent-response-based ROC curves of the classic
model of signal detection. As previously noted (see Section 3), whereas the latent ROC curves are
invariant to the ordinal variable category definitions, the ROC curves based on the manifest ordinal
suspicion scores are not. That is, changing the instructions on how readers are to use the ordinal
suspicion scale will change the non-parametric ROC curve; it will not, in theory, change the latent-
response-based parametric ROC curve. Bayesian hierarchical models that include cluster-specific
random effects have been proposed (cf. Ishwaran and Gatsonis 2000). These models indirectly

induce correlation between the ordinal suspicion scores through the introduction of random effect
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variables. Random-effects normal linear models for correlated functionals have been proposed
(Thompson and Zucchini 1989, Dorfman et al. 1992). These methods do not attempt to model
the original ordinal suspicion data, instead they focus attention on some summary measures, such
as the areas under the curves. Fixed-effects, non-likelihood based parametric models fitted using
generalized estimating equations (Toledano and Gatsonis 1995, 1996) or marginal likelihoods with
correlation adjustment (Hanley and McNeil 1983) have also been proposed. These more ad-hoc
methods can be very useful when there are many marginal responses, a situation when maximum
likelihood fitting is difficult. One drawback to these approaches is that the goodness of fit of
the association model cannot be directly assessed. The fixed-effects, likelihood based parametric
model of Metz et al. (1984) is another alternative; it is most closely related to the method

proposed herein.

Metz et al. (1984) introduced a bivariate generalization of the binormal model. Specifically,

using the notation of this paper, Metz et al. assumed that

my = Pleri-1 < XT € apepi-1 < X5 < epy),
moi; = Pleicg €YY Senyepjo1 <Y <€ o),

where the cutpoints ¢ are defined as above. The bivariate binormal model specification is
completed by assuming that the random vectors (X7, X3} and (Y}*,Yy) have bivariate normal

distributions. Metz et al. (1984) describes a maximum likelihood algorithm for fitting the model.

The bivariate binormal model restricts the marginal probabilities (the ;. ’s and mgy4’s) in
exactl.y the same way as the binormal association-marginal model. This follows because the
marginal distributions of the bivariate normal are normal. The obvious difference is in the way
the association structure is modeled. The bivariate binormal model, owing to the properties
of the bivariate normal distribution, necessa.rily.implies a restrictive form of association which

is measured in terms of correlation between the latent suspicion scores. In contrast, the BAM
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model association structures are (i) very flexible, ranging from very parsimonious to completely
unrestricted, and (ii) measured directly on the manifest ordinal suspicion scores by means of
standard categorical association models. It follows that BAM models are particularly useful
when it is also important to model and describe the association structure between the ordinal

suspicion scores.

There are other important differences between the bivariate binormal model and the BAM
model. Because the association and marginal structures are considered separately, the BAM
model] approach allows for a direct test of goodness of fit of the binormal marginal model; this is
not the case for thg bivariate binormal model, as the association and marginal structures are not
separable. We also point out that specification and maximum likelihood fitting of the generalized
multivariate binormal model for three or more modalities becomes very unwieldy. In contrast,
model specification and model fitting for BAM models is straightforward when there are three or

more modalities.

6 ML Fitting using BAMROC

To facilitate simpler ML fitting by exploiting independence of case and control units, we write

the binormal AM model as

1T1Tk 1
Li(mp) = | Mymy, | = fe(B8) , and Apwg = gi(e), k=1,2, (6.1)
log 7y, Tl + Wrwy

where Awy is the vector of two-way association parameters only; it does not include the intercept

or main effects. As an example, the homogeneous linear-by-linear association model A, of Section

1), @

4 can be written as log mri; = Tp+7y; Thy Doy @ AT

+ A1, where, defining wy, = (1’,51 VTR v s The o

and Ay =[0,0,...,0,1], Ay = Apwr = ge(a) =, k=1,2.

The link L; is one-to-one, but its domain lies in a lower dimension than its range. This “prob-
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lem” can be avoided by reparameterizing the multinomial log likelihood >, Zij Tgij log Try; in
terms of wy, through the one-to-one transformation 7y, = 75 {wi) = exp(Wywi) /(17 exp(Wiw;)).
Using this reparameterized log likelihood, it can be shown that the BAM model (6.1) can be equiv-

alently expressed as

Li(uwi) = [ M) ] - { e ] = hy(6), 62

where the link Ly is one-to-one with non-singular derivative matrix. It is of practical interest to
note that for parsimonious association models, reparametrizing the multinomial log likelihood in

terms of wj can mean a significant reduction in the size of the fitting problem.

Because Ly is invertible, the multinomial log likelihood 35, ;5 Nk 10g Thij(wi) can again be
reparameterized, this time in terms of 8. This is accomplished by replacing w;, with L;l(hk(ﬂ)).
If Ly could be analytically inverted, we could use a standard Fisher-scoring algorithm to find
the maximum likelihood estimate of & and an approximate variance estimate. Unfortunately,
the link Lj generally cannot be analytically inverted. It must be numerically inverted, a task
that can be accomplished using a Newton-Raphson algorithm. It follows that a two-stage nested
algorithm similar to that of Glonek and McCullagh (1995) or Glonek {1996) can be used. The
“outside” iterations update 8 estimates, while the “inside” iterations are used to invert the link.
Although, Glonek and McCullagh {1995) and Glonek (1996) considered different link functions
and hy functions that were linear in A, their algorithms can be modified for applicability in
this more general non-linear case. The appendix gives a more formal outline of the maximum

likelihood iterative fitting algorithm used in BAMROC.

This section closes with a discussion of ML estimation of AUC’s and their differences. By
standard ML theory, @ has an approximate normal distribution with variance matrix avar(é) =

I71(8), the inverse of the estimated expected information matrix. One important benefit of using
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the Fisher-scoring fitting algorithm as outlined in the appendix is that auar(@) is obtained as a

side effect.

For binormal models, the area under the m** {latent) ROC curve is

AUC, = ®( )

Hm
V14 eXm
where © is the standard normal distribution function. By invariance properties, the maximum
» . . . Ly — ..m - I . . . - - .
likelihood estimator is AUCH, @(—"‘—\/m), which is a differentiable function of €. Similarly,
the difference AUC) — AUC; is a differentiable function of . Because avar({0) is computed as
part of the fitting algorithm, approximate (asymptotic) standard errors of the AUC estimators

and their difference can be easily computed using the delta method.

7 Analysis of Neonatal Radiograph Data

Let A; and Ay represent the independence and homogeneous linear-by-linear association model,

respectively, as specified in Section 4.

We fitted three candidate models to the data of Section 2, namely the bivariate binormal {(BB),
BA;M, and BALM. The BB model was fitted using the program CORROC2 (see Metz et al.
1984) available at Dr. Charles E. Metz’s website. Select results are given in Table 2. The symbol
G? represents the likelihood-ratio-statistic for testing goodness of fit of the model; ase(DIFF) is
the approximate standard error for the difference between the two area estimators; and g1 and py

are the latent suspicion score correlations for normals and abnormals, respectively.

Table 2. Maximum Likelihood Fit Results for Neonatal Radiograph Data

-

Model | G2 df AUC, AUC, ase(DIFF) X (ase) A1 (ase) o (ase)

BA;M | 5251 36 0.863 0.861 0.052 - - -
BAp M | 2946 35 0.862 0.858 0.038 0.386 (0.093) - -
BB 2643 34 0.864 0.861 0.038 - 0.513 (0.151) 0.616 (0.104)
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On the one hand, point estimation of the ROC areas is not very sensitive to choice of association
structure. Standard error estimation, on the other hand, is sensitive to choice of association. For
these data, both BArLM and BB give reasonable overall fits, and inferences about the difference
between areas under the ROC curves would be similar. In contrast, the poor-fitting independence
association model BA;M, which ignores correlation between the two ratings, leads to an inflated

estimate of the standard error of the difference between areas.

Because of zero counts, the saturated association model could not be fit (and hence G%(BM),
the likelihood-ratio-statistic for testing goodness of fit of the binormal marginal model, could not
be calculated) without adding small constants. Alternative to adding constants, we conjecture
that, because Ar fits reasonably well (G?(AL) = 27.63,df = 31), G*(BM) ~ G*BALM) -
G*(Ar) = 1.83,df = 4 (cf. Lang et al. 1999). Apparently, the binormal assumption is tenable.

Recall that the binormal assumption cannot be tested using the BB model.

Using the BALM model, we find that the estimated areas under the ROC curves are not
statistically different. That is, the diagnostic performances of the video and plain film images,
as measured using the “area index,” are not statistically different. To detect other possible
differences in diagnostic performance, we present in Figure 1 a graph of the fitted (under BA; M)
ROC curves and the empirical ROC points. That the ROC points all lie above the 45° line
implies that empirically Yy, is stochastically larger than X,,; i.e. both modalities have diagnostic
capabilities. That the ROC curves cross, might lead us to question the use of the area index as

the only measure of diagnostic performance (cf. Metz et al. 1984).
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FITTED BAM ROC CURVES and EMPIRICAL ROC POINTS
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Figure 1. Fitted BA; M ROC Curves and Empirical ROC Points.

The BALM model, which has association model of the form A4, : log Tkij = Tk + T,Enl ) + T}E,?) +

A-i- 3, affords a very simple description of the association between the manifest suspicion scores
for the two modalities. The model implies that the strength of the association as measured by
the single parameter A is the same across the control and case populations. This along with the
choice of equal-interval scores implies a uniform association (cf. Agresti 1990) in that all of the
local odds ratios, 16 from the control population and 16 from the case population, are identical.
The ML estimate of the common local odds ratio value is exp(}) = exp(0.386) = 1.47 (ase =

0.093). In words, for either population, the odds of assigning a suspicion score of i+ 1 rather than
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¢ using Plain Film is estimated to be 1.47 [95% confidence interval: 1.22, 1.77] times higher when
the Video suspicion score is j + 1 than when it is j. As expected there is a significant positive

association,

8 A Small Simulation Study

This section illustrates the broad applicability of the class of BAM models.

The following tables (see Table 3) were generated from a model with binormal margins (a
common AUC of 0.78 was used) and quasi-independence association structure (see Model Ag of

Section 4). Thus, a BAM model holds, but the bivariate binormal model does not.

Table 3. Simulated BAM data.

Mod II Mod II

1 2 3 4 b 1 2 3 4 5
1(14 0 3 0 1118 118 0 1 0 1 :10
210 3 0 1 0] 4 210 3 0 0 0 3
ModI 3[2 1 2 0 0| 5 Modl 3;0 0 10 0 1 |11
4(1 0 0 0 O 1 410 2 1 9 1 |13
5102 0 2 0 1| 5 510 2 1 1 26130
19 4 7 1 2133 8 7 13 10 29|67

Controls Cases

We fitted the bivariate binormal (BB), BA;M, and BAgM to these generated data. Select

results are given in Table 4.

Table 4. Maximum Likelihocod Fit Results for BAM Simulated Data.

Model | G?* df AUC (ase) AUC, (ase) ase(DIFF)
BArM | 15215 36 0.787 (0.053) 0.835 (0.044) 0.069
BAgM | 30.38 34 0.783 (0.053) 0.835 (0.044) 0.051
BB 85.00 34 0.786 (0.053) 0.828 (0.044) 0.050

As before, notice that point estimates of areas are not sensitive to choice of association struc-

ture. The standard error estimate of the difference between area estimators for the BA; M model,
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which fits poorly, is saliently inflated relative to the standard errors for the other two models,
which allow for correlation between responses. For these data, the BB and BA; M models fit
poorly overall, while the BAgM model fits well (as it should). While the association between
the two ordinal responses is easy to describe using the good-fitting BAgM model, a reasonable
description is not available using the poor-fitting BB model. While the binormal assumption
cannot be tested using BB, it can be with BAgM. In fact, G*(BM) = G*(BAgM) — G*(Ag) =

30.38 — 25.68 = 4.80 (df = 4), and the binormal assumption is (correctly) deemed tenable.

This simulated example illustrates that there are BAM data for which the bivariate binormal
model is too restrictive and does not fit well. In contrast, bivariate binormal data can always
be well-fitted using a BAM model with unrestricted association structure, assuming there are
no problems with zero counts. In fact, by arguments of Goodman (1981) and Becker (1989),
there are parsimonious BAM models, for example BAM models with linear-by-linear association

structures, that will typically fit bivariate binormal data well.

In sum, a good-fitting model is especially important if the scientific objective includes describ-
ing the associafion structure. The bivariate binormal models can be overly restrictive and may
fit data poorly. In contrast, most data can be well-modeled using members of the rich class of
BAM models. As a special case, this rich class includes models that fit bivariate binormal data

very well.
9 Discussion

BAM models impose the well-understood and commonly-accepted binormal structure of classic
signal detection theory to each ordinal response marginal distribution. Therefore, unlike non-

parametric models, BAM models afford measures of diagnostic performance that are independent



BINORMAL AM MODELS 18

of the way that the ordinal rating scales are defined (see Section 3). In contrast to bivariate
binormal models, BAM models do not impose the added restriction that the joint distributions
are determined by latent bivariate normal distributions. Instead of explicitly specifying the joint
distributions of the latent responses, BAM models directly specify the ordinal variable association
structure using standard loglinear models. It follows that BAM models are very flexible and easy
to interpret. They are particularly useful when both the ordinal response marginal and association

structures are of scientific interest.

One should exercise caution when evaluating the overall goodness of fit of a BAM model to
sparse tables. In particular, large-sample chi-squared approximations to the null distribution of the
overall goodness-of-fit statistics can be very poor. In the sparse table setting, it is recommended
that a parsimonious, theoretically-viable association model be tested against a more general, but
parsimonious, association model. Failure to reject the simpler model should lend credence to its
use. Alternatively, Markov chain Monte Carlo exact conditional methods for testing goodness of

fit of a loglinear association model could be employed (Forster et al. 1996)

Upon more careful inspection of the ML fitting algorithm used in BAMROC as outlined in
the Appendix, one can see that it is applicable for a much broader class of models than the BAM
models considered herein. For example, the marginal model functions f; can be quite general;
they needn’t be restricted to functions of normal probabilities. For example, bi-gamma models
(Dorfman et al. 1997) for the marginals could be used instead of binormal models. The association
structure need not be loglinear, because the association model functions g;'s can be non-linear in
their arguments. As an example, log-bilinear RC association models (cf. Goodman 1985) could

be used.

An S-plus version of the BAMROC program used to analyze the examples in this paper, and

supporting documentation, can be obtained from the second author (aspelund@stat.uiowa.edu).
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Appendix: The Iterative Scheme used in BAMROC

The goal is to maximize the log likelihood

£(0) = > nflog mp(wi(8)) = > l(wi(8)),
%

k
with respect to 8, where wy (@) is implicitly defined through Ly (w;) = hg(8), and Ly and h; are

as defined in Sections 4 and 2.

Letting s(6) = 0¢(8)/08 be the score, the maximizer will generally solve the likelihood equa-
tions s(@) = 0. The Fisher-scoring algorithm is used to solve these equations. Specifically, for a

current iterate @, the updating equation has the form:
Onew = 6 + 1(6)'s(8), (A1)
where I(@) is the Fisher expected information matrix.

The score vector s has the form

Ay, (w (6 Owi (TN 788 (w
s(@)=>_ _% =2 ( g(g ) ) ( ;L:) [wk=wk(3)) )

k k

and the expected Fisher information can be shown to have the form

o T W
0 =B Enes () o ot (252)
k

where D(7ry) is the diagonal matrix with components in 7y, on the diagonal and mj, = 7 (w(8)).

Also, using the fact that L has a non-singular derivative matrix, we have that

Bwi(0)T [ Ohe(@)T [ OLi{wy)” i
66 — \ o8 By wi=wn) |

For the current value of @, the value of the implicitly-defined function wy(0) is determined.

Given both € and wy(@), all the derivatives involved in the calculation of s(-) and I(-) can be
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computed; the hy, derivatives are computed numerically and the others are computed analytically.

Given the values of these derivatives, the Fisher-scoring update (A.1) is readily obtained.

The italicized phrase in the previous paragraph indicates that the Fisher-scoring update re-
quires computation of w (@) for the given value of 8. But wi(@) equals the value of wy that
solves the equation Ly{wy) = hy{@), and this solution generally cannot be obtained analytically.
Owing to the form of the model, this root-finding problem, i.e. link inversion, can be simplified
somewhat. Specifically, the loglinear parameter wy can be partitioned as wy = (1, A}, where
Ak = Ajwy comprises the association parameters and 1, comprises the main-effects parameters.
Now, the wy solution satisfies A, = g (), which is known because the current iterate value
6 = (o, 3) is given. Therefore, the wy, solution can be obtained, i.e. the link inverted, once we
solve for 7 in the reduced set of equations Myw}(n;,) = £i.(8), where wi{n:) = me{ny, gele)).
We use a Newton-Raphson iterative scheme to solve this reduced system of equations. It is im-
portant to note that this simplification can represent a significant reduction in the size of the
link-inversion problem. This implies that the link inversion is faster and problems with zero

counts are mitigated. This link-inversion approach is related to that of Glonek (1996).
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